

Article

The Formation Mechanism of a Textured Ceramic of Thermoelectric [CaCoO][CoO] on β-Co(OH) Templates through in Situ Topotactic Conversion

Hiroshi Itahara, Won-Seon Seo, Sujeong Lee, Hiroshi Nozaki, Toshihiko Tani, and Kunihito Koumoto *J. Am. Chem. Soc.*, **2005**, 127 (17), 6367-6373• DOI: 10.1021/ja0434883 • Publication Date (Web): 13 April 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 8 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

The Formation Mechanism of a Textured Ceramic of Thermoelectric $[Ca_2CoO_3]_{0.62}[CoO_2]$ on β -Co(OH)₂ Templates through in Situ Topotactic Conversion

Hiroshi Itahara,*,† Won-Seon Seo,‡ Sujeong Lee,‡ Hiroshi Nozaki,† Toshihiko Tani,[†] and Kunihito Koumoto^{§,II}

Contribution from Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan, Korea Institute of Ceramic Engineering and Technology, Seoul, 153-801, Korea, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan, and CREST-JST, Kawaguchi, Saitama, 332-0012, Japan

Received October 28, 2004; E-mail: h-itahara@mosk.tytlabs.co.jp

Abstract: We investigated the formation mechanism of thermoelectric [Ca2CoO₃]_{0.62}[CoO₂] (CCO) on β -Co(OH)₂ templates with maintained orientations by identifying the intermediate phases and specifying the relationship between their crystallographic orientations. We mixed β -Co(OH)₂ templates with the complementary reactant CaCO₃ and prepared a compact by tape casting, with the developed (001) plane of the templates aligned along the casting plane. High-temperature XRD of the compact revealed that β -Co(OH)₂ decomposed into Co₃O₄ by 873 K, and Co₃O₄ reacted with CaO to form CCO by 1193 K via the formation of the newly detected intermediate phase β -Na_xCoO₂-type Ca_xCoO₂ at 913–973 K. Pole figure measurements and SEM and TEM observations revealed that the relationship between the crystallographic planes was (001) β -Co(OH)₂//{111} Co₃O₄//(001) Ca_xCoO₂//(001) CCO. The crystal structures of the four materials possess the common CoO₂ layer (or similar), which is composed of edge-sharing CoO₆ octahedra, parallel to the planes. The cross-sectional HRTEM analysis of an incompletely reacted specimen showed transient lattice images from Ca_xCoO₂ into CCO, in which every other CoO₂ layer of Ca_xCoO₂ was preserved. Thus, it was demonstrated that a textured CCO ceramic is produced through a series of in situ topotactic conversion reactions with a preserved CoO₂ layer of its template.

Introduction

Fabrication of textured ceramics is one of the effective means for enhancing mechanical properties (e.g., fracture toughness and bending strength) and physical properties (e.g., thermoelectric, piezoelectric, ferroelectric, and magnetic properties) of functional ceramics. For instance, textured ceramics have been widely prepared by the "oriented consolidation of anisotropic particles (OCAP) method"¹⁻³ and templated grain growth (TGG)⁴⁻⁷ method, using single crystalline particles with anisotropic (platelike or needlelike) shape. These textured ceramics showed unique or enhanced properties when compared to nontextured ceramics prepared by conventional sintering.

[‡] Korea Institute of Ceramic Engineering and Technology.

- (1) Granahan, M.; Holmes, M.; Schulze, W. A.; Newnham, R. E. J. Am. Ceram. Soc. 1981, 64, C68.
- (2) Kimura, T.; Holmes, M.; Newnham, R. E. J. Am. Ceram. Soc. 1982, 65, (3) Watanabe, H.; Kimura, T.; Yamaguchi, T. J. Am. Ceram. Soc. 1989, 72,
- 289. (4) Hirao, K.; Ohashi, M.; Brito, M. E.; Kanzaki, S. J. Am. Ceram. Soc. 1995,
- 78. 1687 (5) Seabaugh, M. M.; Kerscht, I. H.; Messing, G. L. J. Am. Ceram. Soc. 1997,
- 80, 1181. (6) Hong, S.-H.; Messing, G. L. J. Am. Ceram. Soc. 1999, 82, 867.
- Sabolsky, E. M.; Messing, G. L.; Trolier-McKinstry, S. J. Am. Ceram. Soc. 2001, 84, 2507.

However, these methods are applicable to a limited number of material systems because of the compositional limitation imposed by the synthesis of single-crystal particles. To overcome this disadvantage, we extended the fabrication strategy exploited in the topotactic synthesis of a textured Mn-Zn ferrite ceramic8 and proposed the reactive-templated grain growth (RTGG) method.⁹ The basic concept is (1) to find a reactive template material (a reactive seed) having a simple composition and lattice matching with a target material, (2) to design a topotactic reaction between the template and its complementary reactants, and (3) to synthesize in situ the target material, which preserves crystallographic orientation of the reactive template. The RTGG method enables us to fabricate textured ceramics for various substances.^{9–18} For instance, a textured ceramic of piezoelectric

- (8) Hirota, E.; Kugimiya, K.; Nishio, T. J. Jpn. Soc. Powder Metall. **1979**, *26*, 123. (9) Tani, T. *J. Korean Phys. Soc.* **1998**, *32*, S1217.
- (10) Masuda, Y.; Nagahama, D.; Itahara, H.; Tani, T.; Seo, W.-S.; Koumoto, K. J. Mater. Chem. 2003, 13, 1094.
- (11) Itahara, H.; Fujita, K.; Sugiyama, J.; Nakamura, K.; Tani, T. J. Ceram. Soc. Jpn. 2003, 111, 227.
 (12) Takeuchi, T.; Tani, T.; Saito, Y. Jpn. J. Appl. Phys. 1999, 38, 5553.
 (13) Tani, T.; Takeuchi, T.; Seno, Y. Ceram. Trans. 2000, 104, 267.
 (14) Fukuchi, E.; Kimura, T.; Tani, T.; Takeuch, T.; Saito, Y. J. Am. Ceram.
- Soc. 2002, 85, 1461.
- (15) Tani, T.; Isobe, S.; Seo, W.-S.; Koumoto, K. J. Mater. Chem. 2001, 11, 2324
- (16) Tajima, S.; Tani, T.; Isobe, S.; Koumoto, K. Mater. Sci. Eng. 2001, B86, 20.

[†] Toyota Central R&D Laboratories, Inc.

[§] Nagova University.

[&]quot;CREST-JST.

Bi_{0.5}(Na,K)_{0.5}TiO₃ (simple perovskite-type structure) was prepared by using Bi₄Ti₃O₁₂ (layered perovskite structure) as a reactive template.9 In particular, even if a reactive template has only a partial similarity in the crystal structure to a target substance, the RTGG method is applicable to the production of a textured ceramic: By using β -Co(OH)₂ template particles,¹⁹ we have prepared textured ceramics²⁰⁻²² with enhanced thermoelectric properties for various layered cobaltites, such as [Ca2CoO3]0.62[CoO2]²³⁻²⁵ (abbreviated to CCO), [Ca2(Co0.65- $Cu_{0.35}_{2}O_{4}_{0.624}[CoO_{2}]^{26}$ and $[Bi_{2}M_{2-x}O_{4}]_{p}[CoO_{2}]$ (M = Sr^{27,28} or Ca²⁹), where β -Co(OH)₂ is composed of an edge-sharing CoO₆ octahedra layer similar to the CoO₂ sublattice layer of cobaltites. The degree of orientation of RTGG-processed layered cobaltite ceramics showed, however, considerable dependence on composition: the degree of orientation of $[Bi_2Sr_{2-x}O_4]_p[CoO_2]$ ceramic was clearly lower than those of other layered cobaltite ceramics containing Ca in their crystal structures.²²

While the RTGG method is a powerful technique, it was reported³⁰ that a metastable intermediate phase could disturb the succession of texture from template to target material when the intermediate phase does not share common crystallographic features with the template and target material. Thus, the formation mechanism of any target material must be investigated on different template for the achievement of the fabrication of highly textured ceramics with desired compositions. In the case of the above-mentioned Bi0.5(Na,K)0.5TiO3 ceramic, an electron microscopic analysis indicated that a simple perovskite-type material was formed on the Bi4Ti3O12 template with preserved $\langle 001 \rangle$ orientations.³¹ On the other hand, the formation mechanism of textured cobaltite ceramics has not been fully investigated. In previous reports,^{20,21} we deduced that a textured ceramic is formed by the topotactic conversion of (001) β -Co(OH)₂ \rightarrow {111} Co₃O₄ \rightarrow (001) CCO since all three materials possess edge-sharing octahedral CoO2 layers (or similar) parallel to the planes. In addition, our deduction was supported by the result³² that the degree of preferred (001) orientation of CCO ceramics increases with increasing degree of preferred (001) orientation of the β -Co(OH)₂ templates before their decomposition into Co₃O₄.

This article elucidates the formation mechanisms of a textured CCO ceramic by identifying the intermediate phases and the relationships between their crystallographic orientations. We conducted thermal and structural analyses on RTGG-processed

- (17) Sugawara, T.; Nomura, Y.; Kimura, T.; Tani, T. J. Ceram. Soc. Jpn. 2001, 109. 897.
- (18) Takeuchi, T.; Tani, T. J. Ceram. Soc. Jpn. 2002, 110, 232
- (19) Itahara, H.; Tajima, S.; Tani, T. J. Ceram. Soc. Jpn. 2002, 110, 1048.
- (20) Tani, T.; Itahara, H.; Xia, C.; Sugiyama, J. J. Mater. Chem. 2003, 13, 1865.
 (21) Itahara, H.; Xia, C.; Seno, Y.; Sugiyama, J.; Tani, T.; Koumoto, K. Proc. 22nd Int. Conf. Thermoelectr. (ICT2003); Hérault, France, Aug 17–21,
- (22) Itahara, H.; Xia, C.; Sugiyama, J.; Tani, T. J. Mater. Chem. 2004, 14, 61.
- (23) Li, S.; Funahashi, R.; Matsubara, I.; Ueno, K.; Yamada, H. J. Mater. Chem. 1999, 9, 1659.
- (24) Masset, A. C.; Michel, C.; Maignan, A.; Hervieu, M.; Toulemonde, O.; Studer, F.; Raveau, B.; Hejtmanek, J. *Phys. Rev. B* 2000, *62*, 166.
 (25) Miyazaki, Y.; Onoda, M.; Oku, T.; Kikuchi, M.; Ishii, Y.; Ono, Y.; Morii, Y.; Kajitani, T. *J. Phys. Soc. Jpn.* 2002, *71*, 491.
 (26) Miyazaki, Y.; Miura, T.; Ono, Y.; Kajitani, T. *Jpn. J. Appl. Phys.* 2002, *11*, 240.
- 41. L849
- (27) Funahashi, R.; Matsubara, I.; Sodeoka, S. Appl. Phys. Lett. 2000, 76, 2385.
 (28) Leligny, H.; Grebille, D.; Pérez, O.; Masset, A. C.; Hervieu, M.; Raveau, B. Acta Crystallogr. 2000, B56, 173.
- (29)Maignan, A.; Hébert, S.; Hervieu, M.; Michel, C.; Pelloquin, D.; Khomskii,
- D. J. Phys.: Condens. Matter **2003**, *15*, 2711. (30) Takeushi, T.; Tani, T. Key Eng. Mater. **2002**, *216*, 3
- (31) Seno, Y.; Tani, T. Feroelectrics 1999, 224, 365.
 (32) Itahara, H.; Sugiyama, J.; Tani, T. Jpn. J. Appl. Phys. 2004, 43, 5134.

Figure 1. Schematic flowchart of the RTGG process using β -Co(OH)₂ templates for the fabrication of a textured CCO ceramic and analytical methods used for the clarification of the formation mechanism of a textured CCO ceramic on a β -Co(OH)₂ template with maintained preferred orientations.

specimens during in situ formation reactions. We must design and fabricate layered cobaltite ceramics with optimum compositions as well as a highly preferred orientation because the modulation of electronic structure of the CoO₂ layer, by coordinating the composition and structure of the block layer (Ca₂CoO₃ layer in CCO), would determine the intrinsic thermoelectric properties.³³ Thus, we believe that investigating the conversion mechanism is extremely important for development of bulk cobaltite ceramics with high thermoelectric properties.

Experimental Section

Figure 1 shows the standard processing flowchart for a textured CCO ceramic.^{20,21} We used precipitation-prepared β -Co(OH)₂ platelets (average diameter: $\sim 0.5 \ \mu\text{m}$; thickness: $\sim 0.1 \ \mu\text{m})^{19}$ as reactive templates. The templates were mixed with the complementary reactant (CaCO₃: Ube Material Industries, Ltd.; particle size: $\sim 0.2 \,\mu m$), polyvinyl butyral (binder, Sekisui Chemical Co. Ltd.), and di-n-butyl phthalate (plasticizer, Wako Pure Chemical Industries Ltd.) in an ethanol-toluene solution (ethanol/toluene = 4:6, Wako Pure Chemical Industries). We set the nominal composition to Ca/Co = 3.0:3.92 according to the reported crystal structure of CCO.25 The mixed slurry was tape-cast by a doctor-blade technique, and the obtained sheet (~ 100 - μ m thick) was dried in air at room temperature, cut, and stacked to form a monolithic plate (green compact) with ~3-mm thickness. The organic compounds in the green compact were dewaxed at 673 K in air (dewaxed compact) before the final heat treatment for in situ synthesis and densification of CCO. Table 1 summarizes the specimen preparation conditions and analytical methods used for investigating the formation mechanism of a textured CCO ceramic that maintained the orientation of its templates.

Transition of crystalline phases for the compounds in an RTGGprocessed specimen during heat treatment was determined by hightemperature X-ray diffraction (XRD) (model Rint TTR II, Rigaku Co., Cu Ka radiation). The XRD measurement was carried out on a surface parallel to the casting plane of the dewaxed compact (DWC) after heating (10 K/min) up to 673, 913, 973, 1103, and 1163 K in air flow of \sim 5 dm³/min. To determine the formation of an intermediate phase, if any, we also measured powder XRD patterns for quenched and crushed specimens after heat treatment at 973 K in O2 flow

⁽³³⁾ Sugiyama, J.; Brewer, J. H.; Ansaldo, E. J.; Itahara, H.; Tani, T.; Mikami, M.; Mori, Y.; Sasaki, T.; Hébert, S.; Maignan, A. Phys. Rev. Lett. 2004, 92, 017602.

Table 1. Descriptions and Preparation Conditions of the Specimens Used for the Analysis of the Formation Mechanism of a Textured CCO ([Ca₂CoO₃]_{0.62}[CoO₂]) Ceramic

analysis	specimen	characteristics (preparation conditions)
high-temp XRD	DWC	dewaxed compact (673 K, air)
powder XRD	HTP-1	heat-treated powder (973 K, O ₂ flow, 10 min, quenched)
-	HTP-2	heat-treated powder (973 K, O ₂ flow, 30 min, quenched)
	HTP-3	heat-treated powder (973 K, O ₂ flow, 2 h, quenched)
pole figure	GRN	green body
	DWC	dewaxed compact (973 K, O ₂ flow, 10 min)
	HTC-1	heat-treated compact (973 K, O ₂ flow, 10 min)
	STC-1	sintered ceramic (1193 K, O ₂ flow, 8 h)
SEM	β -Co(OH) ₂	β -Co(OH) ₂ platelets
	DWC	dewaxed compact (673 K, air)
	STC-2	sintered ceramic (1193 K, O ₂ , uniaxial pressing of 19.6 MPa, 20 h)
TEM	HTC-2	heat-treated compact (1043 K, O ₂ , uniaxial pressing of 9.8 MPa, 15 min)
	HTC-3	heat-treated compact (1073 K, O ₂ , uniaxial pressing of 9.8 MPa, 15 min)
	STC-2	sintered ceramic (1193 K, O ₂ , uniaxial pressing of 19.6 MPa, 20h)

(250 mL/min) for 10 min (the specimen, HTP-1), 30 min (HTP-2), and 2 h (HTP-3). To determine the crystal structure of the intermediate phase, we performed Rietveld analysis using RIETAN-2000³⁴ on the XRD pattern obtained for HTP-1.

We conducted pole figure (PF) measurements for a green compact (GRN), a DWC, a heat-treated specimen, and a sintered ceramic specimen to determine the preferred orientations of Co-containing substances encountered during processing. Here, the specimens were heat-treated and sintered, respectively, at 973 K in O2 flow (250 mL/min) for 10 min (specimen HTC-1) and at 1193 K in O₂ flow (250 mL/min) for 8 h (STC-1). PF was obtained for the surface parallel to the casting plane of the specimens in terms of the planes parallel to the common CoO₂ layer in the crystal structures of the Co-containing substances. In these measurements, azimuthal (β , 0° < β < 360°) scans were carried out in a reflection geometry around the normal direction of the above plane at various polar angles (α , 0° < α < 75°) with constant incident (θ) and diffraction (2 θ) angles corresponding to the plane. We evaluated the "preferred orientation function" for the normal direction of these planes $(F_{\rm ND})$.³⁵

The morphology of β -Co(OH)₂ templates was observed using scanning electron microscopy (SEM, model Sigma-V, Akashi, Ltd.). The microstructural observations by SEM were performed for the fracture surface of the DWC and sintered ceramic specimen (STC-2). Here, the STC-2 was prepared by sintering at 1193 K in O₂ atmosphere with uniaxial pressing at 19.6 MPa for 20 h.

To confirm that CCO forms via an intermediate phase with preserved crystallographic orientations, electron diffraction and chemical analysis of the heat-treated specimens were conducted using an electron microscope (JEM 4010, JEOL, Ltd.) operated at 400 kV, equipped with an EDS (Oxford Link ISIS system). Cross-sectional specimens were prepared by mechanical grinding and polishing, followed by Ar ionmilling, which is the final thinning step in making the specimen electron-transparent using Ar⁺ ions excited at a voltage of 3 keV and directed toward the specimen at an angle of 4°. For the observations, RTGG-processed dewaxed specimens were heat-treated under conditions ensuring that the reaction would stop short of completion: heat treatment at 1043 K (specimen HTC-2) or 1073 K (HTC-3) in O2 atmosphere with uniaxial pressing at 9.8 MPa for 15 min. In addition, we studied TEM images of the sintered ceramic specimen (STC-2), in which the formation of CCO had proceeded to completion.

Results and Discussion

Figure 2 shows the high-temperature XRD results obtained for DWC, which was found to be a mixture of Co₃O₄ and CaCO₃ (Figure 2a). The decomposition of β -Co(OH)₂ (the reactive template) into Co₃O₄ was corroborated also by the

Figure 2. Results of high-temperature XRD for a surface parallel to the casting plane of a DWC during heating in air flow. Measured at (a) 673, (b) 913, (c) 973, (d) 1103, and (e) 1163 K. CCO represents [Ca₂CoO₃]_{0.62}- $[C_0O_2].$

results of thermogravimetry and differential thermal (TG-DTA) and powder XRD analyses (see Figures S1 and S2 in Supporting Information). At 913-973 K, the CaO (a product of CaCO₃ decomposition) is considered to react with Co_3O_4 to form an intermediate phase (Figure 2b,c). The XRD pattern for the intermediate phase is found to be similar to that of the layerstructured $Ca_{0.5}[CoO]_2^{36,37}$ (hereafter called Ca_xCoO_2), which comprises alternating Ca cation and CoO₂ layers. Ca_xCoO₂ was expected to react with residual CaO at 1103-1163 K to form CCO, where all the XRD peaks for the specimen heated at 1163 K were assigned to CCO (Figure 2d,e).

To confirm Ca_xCoO₂ formation prior to CCO formation, we measured powder XRD patterns (Figure 3) for isothermally heated (at 973 K) and quenched specimens (HTP-1, HTP-2, and HTP-3). First, diffraction peaks assigned to Ca_xCoO₂ were detected in addition to those from CaCO3 and Co3O4 for HTP-1 (Figure 3a). After being heated for 30 min (HTP-2 specimen), diffraction peaks assigned to CCO appeared besides those from

⁽³⁴⁾ Izumi, F.: Ikeda, T. Mater. Sci. Forum 2000, 321-324, 198.

⁽³⁵⁾ Hermans, P. H.; Platzek, P. Kolloid-Z. **1939**, 88, 68.

⁽³⁶⁾ Miyazaki et al. Tohoku University, 2004; Private communication to be submitted for publication: Yuzuru Miyazaki et al. have determined the crystallographic data of Ca_xCoO₂ by using its single crystal; triclinic, with a = 4.924(2) Å, b = 5.683(3) Å, c = 5.685(3) Å, $\alpha = 75.400(9)^{\circ}$, $\beta = 89.974(9)^\circ$, and $\gamma = 81.261(9)^\circ$. (37) Cushing, B. L.; Wiley, J. B. J. Solid State Chem. **1998**, 141, 385.

Figure 3. XRD patterns for crashed specimens after heat treatment at 973 K in O₂ flow for (a) 10 min (HTP-1 specimen), (b) 30 min (HTP-2), and (c) 2 h (HTP-3). CCO represents $[Ca_2CoO_3]_{0.62}[CoO_2]$.

Figure 4. Comparison of the observed XRD pattern of the HTC-1 specimen and the calculated XRD pattern by Rietveld analysis. Inset shows the schematic representation of the model structure of Ca_xCoO_2 . Delta shows the difference of intensities between measured and calculated XRD patterns.

 $CaCO_3$ and Co_3O_4 (Figure 3b). Finally, both the number and strength of the CCO peaks increased while the Co_3O_4 peaks disappeared in HTP-3 specimen heated for 2 h (Figure 3c). Thus, it was confirmed that CCO was formed via the formation of the intermediate phase, Ca_3CoO_2 .

To determine the crystal structure of Ca_xCoO₂, we performed Rietveld analysis (Figure 4) on the XRD pattern of the heattreated specimen (HTP-1), which consisted of Ca_xCoO₂, Co₃O₄, and CaCO₃. The background was eliminated, and pseudo-Voight function was used for the analysis. We used the atomic positions in the space group (*P1*, triclinic) for Ca_xCoO₂,³⁶ which were determined by using single crystalline Ca_xCoO₂ particles, in which Ca_xCoO₂ is shown³⁶ to have a β -Na_xCoO₂-type structure³⁸ with CoO₂ layer (composed of edge-sharing CoO₆ octahedra) and Ca cations stacked alternately (see the inset in Figure 4).

Figure 5. Results of PF measurements for the (a) (001) plane of β -Co(OH)₂ templates in a GRN, (b) (111) plane of Co₃O₄ in a DWC, (c) (001) plane of Ca_xCoO₂ in a heat-treated compact (HTC-1), and (d) (002) plane of CCO in a sintered ceramic (STC-1). F_{ND} represents the value of the preferred orientation function evaluated in the normal direction³⁵ of the measured plane.

For both the peak positions and intensities of Ca_xCoO₂, the calculated XRD pattern was in good agreement with the measured XRD pattern. The reliability factors were $R_{wp} = 8.89\%$, $R_e = 5.00\%$, s = 1.78, $R_I(Ca_xCoO_2) = 3.61\%$, $R_I(CaCO_3) = 7.29\%$, and $R_I(Co_3O_4) = 4.28\%$. In addition, the lattice parameters for Ca_xCoO₂ derived from the analysis (triclinic, a = 4.9072(4) Å, b = 5.6661(3) Å, c = 5.6637(4) Å, $\alpha = 75.293(7)^\circ$, $\beta = 89.981(9)^\circ$, $\gamma = 80.969(5)^\circ$) were close enough to those reported for a Ca_xCoO₂ single crystal.³⁶ The calculated mass percentages of the compounds were 50.96, 19.69, and 29.36 wt % for Ca_xCoO₂, Co₃O₄, and CaCO₃, respectively.

PF measurements (Figure 5) indicate that the (001), (111), (001), and (002) planes, respectively, of β -Co(OH)₂ in GRN, Co₃O₄ in DWC, Ca_xCoO₂ in HTC-1, and CCO in STC-1 were aligned parallel to the casting plane: the contours of the diffraction intensity from these planes were concentrated at the pole, and $F_{\rm ND}$ values were those for substantially oriented specimens ($F_{\rm ND} = 0.0$ for completely random and $F_{\rm ND} = 1.0$ for perfectly oriented). These results suggest that the crystallographic planes were in the relationship of (001) β -Co(OH)₂// {111} Co₃O₄//(001) Ca_xCoO₂//(001) CCO.

An SEM photograph of the β -Co(OH)₂ templates (Figure 6a) reveals them to be hexagonal platelets. According to oriented particulate monolayer XRD measurements,³⁹ the developed plane of the templates was the (001) plane²¹ (the inset of Figure 6a). The SEM photograph of the DWC (Figure 6b) indicates that Co₃O₄ particles maintained the hexagonal platelike morphology of the templates and that the developed plane of the Co₃O₄ particles was along the casting plane. These results suggest that the (001) plane of β -Co(OH)₂ templates is converted into the {111} plane of Co₃O₄ particles, which is consistent

⁽³⁸⁾ Fouassier, C.; Matejka, G.; Reau, J.-M.; Hagenmuller, P. J. Solid State Chem. 1973, 6, 532.

⁽³⁹⁾ Sugimoto, T.; Muramatsu, A.; Sakata, K.; Shindo, D. J. Colloid Interface Sci. 1993, 158, 420.

Figure 6. SEM photographs for (a) β -Co(OH)₂ templates (inset shows the oriented particulate monolayer XRD³⁹ pattern obtained for β -Co(OH)₂²¹), (b) a fracture surface perpendicular to the casting plane of a DWC, and (c) a fracture surface perpendicular to the casting plane of a sintered ceramic (STC-2).

with the PF results (Figure 5a,b). The conversion is in agreement with the topotactic relationship between the crystal structures. β -Co(OH)₂ is composed of edge-sharing CoO₆ octahedra layers along the (001) plane. In Co₃O₄, on the other hand, there are two different layers along the {111} plane: one composed of the CoO₆ octahedra and the other is a mixed layer of CoO₆ octahedra and CoO₄ tetrahedra. Finally, an SEM photograph (Figure 6c) and PF measurement of the (002) plane (Figure 5d) of sintered ceramic specimens suggest that the developed plane of CCO grains was (001) and parallel to the casting plane.

Figure 7 shows a high-resolution TEM (HRTEM) image and the selected area electron diffraction (SAED) pattern for STC-2 in which the formation of CCO had proceeded to completion. It was found that the ED pattern corresponded to CCO crystal structure. According to the simulated HRTEM image of CCO,⁴⁰ the dark linear contrast is derived from the CoO₂ layer of CCO, and the three arrays of the dark spots are due to the triplicate rock salt-type structure of CCO.

Figure 8 represents the cross-sectional HRTEM image of HTC-2. The figure shows the structural transition from Co_3O_4

Figure 7. Cross-sectional HRTEM image and SAED pattern of the sintered ceramic (STC-2). The image and diffraction pattern were taken with the incident beam parallel to the [110] direction in the unit cell for a Ca_2CoO_3 block of CCO. The inset shows the simulated HRTEM image⁴⁰ of CCO containing alternating CoO_2 and rock salt-type layers.

Figure 8. FFTs (designated as 1-1, 2-1, and 3-1) of the corresponding cross-sectional HRTEM image of the heat-treated specimen (HTC-2), which were numbered as 1, 2, and 3, show the structural transition from Co₃O₄ (region designated as number 1) to Ca_xCoO₂ (region designated as number 2). SAED (designated as 3-2) was taken from the middle part, wider region than for FFT filtering, and exhibited the crystallographic orientation relation between Co₃O₄ and Ca_xCOO₂.

(region marked 1) to Ca_xCoO_2 (region marked 2) by SAED patterns and fast Fourier transform (FFT) images. The FFT of region 1 indicated the characteristic hexagonal network of reflection intensities for the {111} plane of Co_3O_4 . In addition, EDS analysis revealed the ratio of Ca/Co (atom %) to be less than 0.06 in the upper part of region 1. The FFT image of the selected region (i.e., region 2) exhibited a layered structure. The Ca/Co ratio (atom %) was found to be ~0.4 by EDS analysis, which pointed toward the Ca_xCoO_2 structure as well. On the other hand, the crystallographic orientation relationship between Co_3O_4 and Ca_xCoO_2 was clearly identified in the SAED (designated as 3–2), which was taken from the middle part of

Figure 9. (a) Cross-sectional HRTEM image of the heat-treated specimen (HTC-3). The image was taken with the incident beam parallel to the [110] direction in the unit cell for a Ca_2CoO_3 block of CCO. (b) Schematic representation of the possible interpretation for the observed contrasts shown in the magnified view for a part of the TEM image.

the image. The (001) plane of $Ca_x CoO_2$ was shown to be exactly parallel to the $\{111\}$ plane of Co₃O₄. The *d* spacings of the (001) plane for $Ca_x CoO_2$ and the (111) plane for Co_3O_4 were calculated to be 0.551 and 0.462 nm, respectively. The diffraction pattern for Co₃O₄ overlapped with that of Ca_xCoO₂ in the FFT image (designated as 3-1). In addition to these patterns, the epitaxial relationship observed at the boundary of the Ca_x- CoO_2 and Co_3O_4 phases (part 3) supports the crystallographic relationship {111} $Co_3O_4/(001)$ Ca_xCoO_2 revealed by PF measurements (Figure 5b,c). It is considered that Ca and O would diffuse into the Co₃O₄ structure without perturbing the frameworks of the CoO₆ octahedra during the formation of $Ca_x CoO_2$ with preserved orientation. This is expected by the analogy to the following two phenomena: (1) Li cations are intercalated and deintercalated between CoO₂ layers in the Li_xCoO₂ cathode during the charge and discharge process, respectively, and (2) Ca cations enter between CoO_2 layers during the synthesis of $Ca_x CoO_2$ by the ion exchange of Na_xCoO₂.37

Figure 9a gives an HRTEM image of HTC-3 prepared by heat treatment at a temperature (1073 K) higher than that for the HTC-2 (1043 K). It is observed that three successive dark lines spaced ~0.54 nm apart are gradually transformed into the two dark lines aligned at ~1.08-nm intervals, with bright and dark contrasts between them. Here, the dark line corresponds to the CoO₂ layer, according to the simulated HRTEM image shown in the inset of Figure 7. In the magnified figure in Figure 9a, the image on the left-hand side is expected to correspond to $Ca_x CoO_2$ judging by the intervals of the adjacent dark linear contrasts that indicate the CoO_2 layer. On the other hand, the image on the right-hand side presumably corresponds to a CCO-like structure because of the similarity of the spacing of the linear contrasts indicating the CoO_2 layer even though the spots due to the rock salt-type layer between the linear contrasts are less evident when compared to those of CCO shown in Figure 7. Here, in the case of CCO, the projected potentials of a column of Ca and Co atoms are represented by the dark spots, which reflect the electrostatic potential maxima, because all Ca and Co atoms in unit cells in the rock-salt type layer (Ca₂CoO₃ blocks) are positioned exactly on top of each column in the [110] direction. In addition, bright spots situated between the dark spots correspond to electrostatic potential minima, that is, empty channels between constituent atoms in the structure. Therefore, the image with the unclear spots would be derived from the CCO-like structure, in which the formation of the rocksalt type layer was nearly completed. The interpretation that the image is of a CCO-like structure is corroborated also by an HRTEM image of a different section of the HTC-3 specimen in Figure 9 (see Figure S4 in Supporting Information), which indicates the presence of Ca-deficient CCO before CCO formation was completed. It was found that the linear arrays of the spots (indicating the rock salt-type layer of CCO) between the dark linear contrast (indicating CoO_2 layer of CCO) were evident in some part, while the spots were not distinctive in the other part. EDS analysis indicates that the amount of Ca in the latter part (Ca/Co = 0.5-0.65) was smaller than that of nominal composition of CCO (Ca/Co = 3:3.92). On the other hand, the d_{001} value of the latter part was close enough to that of CCO. Thus, the possible interpretation of Figure 9a is that $Ca_x CoO_2$ provided a part of CoO_2 layers to form the CoO_2 layer of CCO, while the other CoO₂ layers reacted with Ca and O to form the rock salt-type layer of CCO (Figure 9b).

Figure 10 schematizes the crystal structures of CdI₂-type β -Co(OH)₂, spinel-type Co₃O₄, β -Na_xCoO₂-type Ca_xCoO₂, and the misfit-layer-structured CCO, which are topotactically related: There are CoO₂ layers composed of edge-sharing CoO₆ octahedra along the (001) plane in the case of β -Co(OH)₂, $Ca_x CoO_2$, and CCO and along the {111} plane in the case of Co₃O₄. As described above, it is considered that a textured CCO ceramic is formed by in situ topotactic conversion of (001) β -Co(OH)₂ \rightarrow {111} Co₃O₄ \rightarrow (001) Ca_xCoO₂ \rightarrow (001) CCO, where the β -Co(OH)₂ template provides the CoO₂ layer, the common framework of the crystal structures. This formation mechanism is also supported by the previous result that the degree of orientation of CCO increased with increasing degree of orientation of the β -Co(OH)₂ templates.³² The intermediate $Ca_x CoO_2$ phase might play a key role in the topotactic formation of misfit-layered cobaltites containing Ca from β -Co(OH)₂ template since Ca-free $[Bi_2Sr_{2-x}O_4]_p[CoO_2]$ did not give highly textured ceramics by the RTGG method using the same β -Co(OH)₂ template as the other layered cobaltites.²² The current study represented the first evidence that topotactic conversion is essential for texture development on templates with maintained orientations.

Conclusions

We investigated the formation mechanism of a textured CCO ceramic during the RTGG process using a β -Co(OH)₂ template

Figure 10. Schematic representations for the crystal structures of (a) CdI₂-type β -Co(OH)₂, (b) spinel-type Co₃O₄, (c) β -Na_xCoO₂-type Ca_xCoO₂, and (d) misfit-layer-structured CCO, with topotaxial relationship with one another.

and the complementary reactant, CaCO₃. High-temperature XRD measurements showed that Co₃O₄ and CaO, derived, respectively, from the decomposition of β -Co(OH)₂ and CaCO₃, reacted to form the intermediate Ca_xCoO_2 phase, and finally Ca_xCoO₂ reacted with the residual CaO to form CCO. Reitveld analysis indicated that $Ca_x CoO_2$ has a β -Na_xCoO₂-type layered structure with alternately stacked CoO₂ layers and Ca cations. PF measurements revealed the relationship between the crystallographic planes: (001) β -Co(OH)₂//{111} Co₃O₄//(001) $Ca_x CoO_2 //(001)$ CCO. This was also supported by the following results: (1) SEM observations showed that the hexagonal shape of (001)-plane-developed β -Co(OH)₂ particles was maintained for Co_3O_4 particles with preferred {111} plane in a dewaxed compact. (2) TEM observations of specimens subjected to an incomplete heat treatment revealed that adjacent Ca_xCoO₂ and Co₃O₄ particles have an epitaxial relationship and that the common CoO₂ layer is preserved in the transient lattice image from $Ca_x CoO_2$ to CCO. Thus, it has been proven, for the first time, that β -Co(OH)₂ templates provide the CoO₂ layer of CCO via Co₃O₄ and Ca_xCoO₂ during the topotactic formation of a textured CCO ceramic with maintained preferred orientation. In general, the current article emphasizes the importance of a reaction design in which crystallographic similarities from the starting material all the way through the target substance must be at least partially maintained during the fabrication scheme of highly textured polycrystals with enhanced physical properties.

Acknowledgment. We thank Dr. Yuzuru Miyazaki of Tohoku University for giving us structural information on $Ca_{0.5}[CoO_2]$. We are grateful to Dr. Kayo Horibuchi, Dr. Yoshiki Seno, Dr. Jun Sugiyama, and Dr. Ryoji Asahi of Toyota CRDL for fruitful discussions on the formation mechanisms of CCO. The crystal structures shown in Figures 4 and 10 were drawn with VENUS developed by Dr. Ruben Dilanian and Dr. Fujio Izumi of National Institute for Materials Science. This work was partly carried out by joint research and development with International Center for Environmental Technology Transfer in 2002–2004, commissioned by the Ministry of Economy Trade and Industry.

Supporting Information Available: Figure S1: Results of powder XRD for (a) precipitation-prepared template particles and (b) the particles obtained after the templates were heat-treated at 973 K in air. Figure S2: Results of TG-DTA analysis (air flow, 10 K/min) for β -Co(OH)₂ templates. Figure S3: Results of TG-DTA analysis (air flow, 10 K/min) of a crashed powder of a dewaxed compact (DWP) composed of Co₃O₄ and CaCO₃. Figure S4: Cross-sectional HRTEM image and SAED pattern of the heat-treated specimen (HTC-3), showing (1) CCO and (2) Ca-deficient CCO. The image and diffraction pattern were taken with the incident beam parallel to the [110] direction in the unit cell for a Ca₂CoO₃ block of CCO. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0434883